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ABSTRACT

Autonomous vehicles as well as vehicles with ADAS features use multiple sen-
sors and integrate their data to take decisions and assist in the driving process as well
as in automating it. By using LiDAR, RADAR, etc., data can be acquired in metric
units which helps in taking decisions in real world environment. However, the high
cost of such sensors is a major drawback. In the recent years, researchers as well as
autonomous vehicle manufacturers have been looking at the feasibility of using only
RGB cameras for perception. This is largely attributed to the influence of deep learning

on computer vision in the current decade.

In that context, this project work has been focussed on the perception aspect of
autonomous vehicles with data from a single RGB camera. The primary objective is to
predict the semantic activity of the ego vehicle as well as the vehicles on the scene. It is
achieved using deep neural networks for three major tasks namely, object detection and
tracking, lane detection and optical flow estimation. Object detection and tracking is
used to detect and track the vehicles on the scene. Lane detection is used to understand
the context of the road. Optical flow estimation is used to capture the motion of vehicles.
The outputs of the three networks are manually integrated to interpret the semantic
vehicle activity. The secondary objective is to run this integration on an embedded

board. The performance of the same is evaluated and the results are presented.

This work is a step in the shift towards perception with only RGB camera. An end-
to-end implementation of the same could be used as a warning system as part of an
ADAS feature in vehicles to implement collision warning, lane departure warning, etc.
The major benefit of such a system is the reduced cost which makes it easier for the

manufacturers to equip their vehicles with these systems at a reasonable price.
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CHAPTER 1

INTRODUCTION

1.1 AUTONOMOUS DRIVING AND ADAS

Vehicles have played a significant role in transforming our lifestyle ever since their
inception by making transportation easier and faster. During the early years, major
efforts were made to make them more efficient, powerful and suitable for long distance
transportation. Over the last few decades further emphasis has been laid on reducing
human effort by making intelligent systems. These changes started as minimal feature
additions which assisted the driver in various tasks and have evolved to become Driver

Assistance Systems as observed today.

In an autonomous vehicle, perception, cognition and action take place with little or
no human interference. The standard followed throughout the world for automation in

vehicles is provided by Society of Automotive Engineering (SAE) as shown in Figure

L1

Full Automation

Driver Partial Conditional
Automation Assistance Automation Automation Automation Automation

Zero autonomy; the Vehicle is controlled by Vehicle has combined Driver is a necessity, but [l The vehicle is capable of il The vehicle is capable of
driver performs all the driver, but some automated functions, is not required to monitor [ll  performing all driving performing all driving

driving tasks. like acceleration and ent. The

vehicle design. gag: may have the option to
with the driving task and vehicle at all times control the vehicle. control the vehicle.
monitor the environment with notice.
atall times.

Figure 1.1: Stages of Autonomy by SAE

Advanced Driver Assistance System (ADAS) is one of the beginning steps in the
process of achieving Autonomous Driving. Features of ADAS fall within Level 1 or
Level 2 depending on the level of control they have over the vehicle. Level 1 features

such as Lane Departure Warning System mostly consist of perception which warns the



driver in case of deviation of the ego vehicle from the ego lane. Level 2 features such as
Lane Centering System does perception as well as partial control over the ego vehicle
such that it stays in the centre of the lane. The amount of cognition and control increases
with appropriate perception. For attaining stage 3 autonomy and above, perception in

higher dimensions is mandatory.

ADAS features are available in most commercial vehicles right now either as a
built-in package or as an add-on. They assist the driver in the process reducing the
effort and skill required to perform tasks such as parallel parking, lane maintenance,
etc. These features serve as building blocks which when integrated help to achieve

complete autonomy of the vehicle in the near future.

1.2 TASKS ADDRESSED BY COMPUTER VISION

Computer Vision is the science of making machines see and make sense of the en-
vironment. It is different from digital image processing as it takes image as the in-
put and provides an inference as the output. Some of the tasks addressed by com-
puter vision include classification, object detection, segmentation, pose estimation, 3-
dimensional reconstruction, etc. With the arrival of deep learning, there was a
major shift from feature based algorithms to learning based algorithms. Almost every
task could be taught to a computer without explicitly mentioning the features provided

enough data is available for training.

Many industries benefited from this transition, especially the automotive industry.
Autonomous driving became the most important topic of research. Perception is the
primary task in autonomous driving as the subsequent tasks such as cognition and action
are dependent on the results of perception. It is directly based on computer vision and
deep learning. The tasks addressed by computer vision are used in this application.

Some of the tasks which found their application in autonomous vehicles are as follows.



1.2.1 Object Detection

It involves classification and localization of the objects in the frame. Classification
provides the class information i.e. car, truck, person, etc. while localization provides
their bounding box coordinates. It also provides the confidence score with which each
object is predicted as a particular class. Tracking is used to maintain the identity of
a specific object across frames. It provides a relation between the same object along

successive frames.

1.2.2 Segmentation

It gives pixel based classification where each pixel is allocated to a class. Each class of
pixels is specified with a different colour. The advantage of this over standard object
detection is that this provides an outline of the object whereas the former provides

rectangle boxes for everything.

1.2.3 Optical Flow

It provides the apparent movement of pixels across frames to estimate motion. The
motion of the objects which are moving in the real world can be measured in the image
plane. The flow vector will have X and Y components. Optical flow estimation can
be used to predict relative motion between vehicles, the motion of other vehicles in

general, etc.

1.3 MODALITIES IN SENSING

Imaging Modalities vary throughout the electromagnetic spectrum right from gamma
rays to radio waves. It also includes acoustic imaging. While each modality has its own
application where it is best suited, generally, visible light (RGB) and infrared are con-

sidered for most tasks.

Sensors in autonomous vehicles use modalities such as Infrared Radiation (IR)), vis-



ible light and radio waves. IR and radio waves are used in sensors which provide
map of the environment. Even though they help in path planning and navigation, RGB
is the most important modality in this application as we need the vehicle to view its
surroundings as humans view it, i.e. in colour. Depth data alone is not sufficient to
understand the environment completely, as a lot of information such as traffic signals,
sign boards, etc. are colour coded. In order to understand them, RGB sensor camera
is a must and it becomes an important modality. The fact that a pair of stereo cam-
eras can provide depth using a disparity map supports the fact that RGB sensors can be
used to measure depth too but the other sensors cannot provide colour data. Majority
of the computer vision tasks such as object detection, pixel segmentation, optical flow

estimation work on RGB images.

1.4 INTRODUCTION TO DEEP LEARNING

Artificial Intelligence is the science of providing machines with the ability to think
and make decisions on their own. Contrary to popular belief, the theory behind most
fundamentals of artificial intelligence were laid back in the 20th century. Neural net-
works are set of algorithms loosely modelled after the human brain, that are designed
to recognize pattern. The theory behind the first neural networks were published back
in 1943 by Warren McCulloch [36]]. However, as the number of layers increased, it be-
came increasingly difficult to perform the computations with the hardware of that time.

Hence, they remained a theory for a very long time.

In the 1990s, a number of neural network architectures were proposed and active re-
search was conducted. Convolutional Neural Network (CNNJ) were used to detect hand-
written digits on cheques in the US from the early 2000s. During this period, machine
learning techniques such as Support Vector Machines were already in use for various
applications where the Machine Learning Engineer had to tune the hyperparameters to

classify the data into different categories.

It was in 2012, Alex Krizhevsky and his team won the ImageNet challenge [3]] using
CNN named AlexNet [15] for image classification. AlexNet achieved state of the art

results by reducing the error dramatically, proving the accuracy of such networks.



The beauty of deep learning is that the programmer need not create the feature
space on his own. The network will identify these features on its own and classify them
accordingly if it was provided with enough data (input and corresponding output labels)
which made deep learning as black box. In fact, ‘deep’ in deep learning meant the large
number of layers the network was made of. This enabled the network to process the
input and create more and more abstract features of the given input with increase in
layers. The time and effort required to generate this level of abstraction using machine

learning techniques is very large.

With the advent of Graphics Processing Unit (GPU]) and availability of large datasets,
deep learning immediately took off and became a popular technique among researchers
and companies. It is used in various industries such as automotive, e-commerce, so-
cial media, finance, etc., for applications involving sound, time series, text, image and

video.

One of the most influenced industries by the arrival of deep learning is the auto-
motive industry. Autonomous vehicles garnered a huge popularity as it was one of the
most direct applications of deep learning. It helped solve the problem of perception ex-
ceptionally well in autonomous vehicles. Vehicle detection, pedestrian detection, traffic
sign recognition, drivable area segmentation are some of the problems being solved by
deep learning. This success is largely due to the ability of deep neural networks to
make use of the large data available in the form of dashcam videos, etc. Even though
people are cynical about providing control to autonomous vehicles, tests are being im-
plemented by many researchers and companies to prove that it could be as reliable as a

human driver, if not better.

1.5 OBJECTIVES

The main objectives of this project work are as follows:
* To develop a deep learning algorithm based on vision data to perform.

— Vehicle Detection and Tracking

— Lane Detection



— Optical Flow Estimation

* To integrate the outputs of the above networks to infer semantic vehicle activity.

* To implement the inference algorithm on an standard embedded platform

1.6 CONTEXT AND MOTIVATION

There are certain conditions for which the final expected demo of the project will

work. It involves some environmental constraints which are listed as follows:

* Paved roads
* Presence of lane markings

* Less traffic congestion

Currently, the systems deployed in autonomous cars use sensors such as RGB cam-
era, LIDAR, RADAR, etc. for perception. Each of these sensors has its own advantages
and limitations, but when used in the right combination, provides the best estimate of the
vehicle's environment. However, humans can drive vehicles predominantly using our
vision for perception. Artificial Neural Networks were inspired by the working of the
brain of human beings and hence, even they can be trained in such a way that complete
sensing is performed using RGB cameras alone. This is the upcoming trend as com-
panies are trying to use only cameras for perception as other sensors such as LiDARs
are costly too. Most companies working on autonomous vehicles - including Ford, GM
Cruise, Uber and Waymo - think LiDAR is an essential part of the sensor suite whereas
Tesla's vehicles don’t have LiDAR and rely on radar, GPS, maps and other cameras and
sensors. Researchers at Cornell University agree with this LIDAR-less approach. Using
two inexpensive cameras on either side of a vehicle's windshield, Cornell researchers
have discovered they can detect objects with nearly LiDAR's accuracy and at a fraction

of the cost [9] .

The main objective of this project is to perform vehicle activity understanding using
vision data alone which is acquired from a single RGB camera. Vehicle activity under-

standing, implies semantic understanding as obtaining metric data using just a single



camera is not accurate or feasible. The final output will be in terms of classes and their
activities such as "car-oncoming-no change", "truck-forward-left to right", etc. This
provides a rough estimate of vehicle activity and can be used to provide warnings in
case there is a possibility of an accident. The motivation behind taking up this project

is to prove the feasibility of a single camera for perception in autonomous driving.

1.7 PERSPECTIVE OF THE PROJECT

The project is a part of perception involved in the complete system of an autonomous
vehicle. It acquires data from a sensor and passes it through different networks to obtain
an output to understand semantically, the vehicle activity in terms of their position and
velocity. These motion related parameters are observed in the image plane and the

labels are identified based on their corresponding image plane components.
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Figure 1.2: Illustration of Mechatronics Perspective

An autonomous vehicle is a complex system involving integration of various sys-
tems. System integration is synonymous with mechatronics. Hence, Mechatronics en-

gineers have an edge over the rest in handling of data between units as the needs of the



cognition and actuation are taken into account while obtaining the output from percep-

tion unit Figure[1.2]

1.8 OVERVIEW OF THE PROJECT

Firstly, theoretical knowledge about deep learning had to be gained as it was not a
part of the B. Tech. Mechatronics engineering curriculum during the course of study of
the project members. Learning was an important process in this project. It continued

with the course of the project as it is a vast field.

As soon as the main objectives of the project were decided, it was decided to use
Deep learning for all the three tasks as those algorithms provided fast and accurate
results. Literature survey was the immediate step as a lot of networks had to be analysed

for each task and the best one for autonomous driving application had to be chosen.

The framework was also decided based on availability of online community support,
embedded deployment capability, optimization of model, etc. The pre-trained networks
of the chosen networks were obtained and inference was performed on PC for all the

three networks.

The inference is made on an embedded board. Raspberry pi was chosen as the
embedded board and Intel Neural Compute Stick-2 was added to support the inference

process. Inferencing of the networks were performed on the embedded board.

1.9 ORGANISATION OF THE REPORT

This report consists of five key chapters and their contents are as follows :

Chapter 1 is Introduction which provides an introduction to autonomous driving and
deep learning and shows the need for the project. The perspective of the project is also

discussed along with the context and motivation for the project.

Chapter 2 is Literature Survey. All the literature referred for the project such as

research articles etc. for the three tasks are presented in detail.



Chapter 3 is the Deep Learning Pipeline. The hardware and software tools setup for
the training is mentioned. The three networks chosen are discussed in detail along with

the network architecture, the reason for choosing them, etc.

Chapter 4 is about the Integration and Inferencing. The merging of outputs of the
three networks and the process of extracting the final label for semantic vehicle activity
has been discussed. The hardware and software setup for embedded inferencing is also

mentioned.

Chapter 5 is about conclusion and future scope of the project.



CHAPTER 2

LITERATURE SURVEY

2.1 OBJECTIVE OF THE SURVEY

The most significant part of developing a deep learning project is literature survey.
Building a deep neural network from scratch is difficult and it consumes a lot of time.
Hence, it is better to refer to all the existing networks for the same application, shortlist
a few and tweak them to work for the required application. This provides a base to
work with and saves a lot of time to begin with. Hence, literature survey had to be
done to choose the best network for all three tasks. The main objective of the survey is
to find out the best network for each task in terms of accuracy, time complexity, space

complexity, etc.

2.2 STRATEGIES FOR FILTERING

The performance metrics of many networks were compared to shortlist 2-3 best ones
for each task. The main parameter for shortlisting was the runtime of the network for
predicting output for one frame. Hardware-independent runtime is very crucial in this
application since the final output has to be run on an embedded board. The second

parameter was accuracy provided by the network.

Time vs accuracy trade-off is always present in every algorithms. But in autonomous
driving scenarios real-time performance is crucial though accuracy has been given al-

most equal importance.



2.3 EVALUATION METRICS

The evaluation metrics which were used to compare the networks for each task are

discussed in this section.

2.3.1 Intersection over Union

Intersection over Union ([oU)) is used to measure the accuracy of an object detector
on a dataset. It can be used as an evaluation metric for any algorithm that outputs
bounding boxes.

ol — Area of Overlap

2.1

Area of Union

2.3.2 Fl-measure

Fl-measure (also F-score) is a measure of a test’s accuracy. It considers both the
precision p and the recall r of the test to compute the score: p is the number of correct
positive results divided by the number of all positive results returned by the classifier,
and r is the number of correct positive results divided by the number of all relevant
samples (all samples that should have been identified as positive). The F1 score is the
harmonic average of the precision and recall, where an F1 score reaches its best value

at 1 (perfect precision and recall) and worst at 0.

Flmeasure = 2ﬂ 2.2)
p+r

2.3.3 Mean Average Precision

Average Precision (AP) is an evaluation metric in measuring the accuracy of object
detectors like You Only Look Once (YOLO). AP computes the average of precision

value for recall value over O to 1. This can be calculated by area under the curve drawn

11



from precision and recall. mAP is the average of AP.

1
AP:/ p(r)dr (2.3)
0

Here, p and r are precision and recall as mentioned in F1-measure 2.3.2.

2.3.4 Angular Point Error

Angular Point Error (APE) is the difference in angle between the correct and esti-
mated flow vectors.

APE = cos™'(c.e) (2.4)

Here, c is the vector normalized correct motion vector and e is the vector normalized

estimate optical flow vector.

2.3.5 End-to-end Point Error

End-to-end Point Error (EPE) is calculated by comparing an estimated optical flow
vector (Vs ) with a groundtruth optical flow vector (V). [EPE is defined as the Eu-

clidean distance between these two:

EPE = |V — Vil (2.5)

24 OBJECT DETECTION

The following deep learning networks were shortlisted after literature survey for ob-
ject detection task. These three networks have been compared in Table [2.1| considering
only the speed and accuracy as metrics. All three networks were trained with the same
dataset MS COCO [34]] and inference has been done on Titan X GPU as the candidate

hardware.

Faster RCNN [33]] uses a two-staged approach to first get region proposals and then

classifying the regions with a secondary neural network. It is the most accurate with

12



Table 2.1: CNNs for Object Detection

Algorithm mAP | Speed (fps) | Image Resolution
Faster RCNN [33]] | 34.9 5 600 x 600
SSD [37] 31.2 8 512 x 512
YOLO v3 [32] 33 20 608 x 608

the highest mAP, but considering speed, it is very slow, about 5 frames per second
while 300 region proposals are considered. Though speed can be increased by
decreasing region proposals and by reducing the image resolution but it can affect the

overall accuracy of the algorithm.

Unlike Faster RCNN, Single Shot Multibox Detector uses a single shot object
detector to perform both classification and localization. Single shot object detector is
quite similar to region proposal network used in Faster RCNN to find region proposals
in the first step, but here object detectors are used to find the object classes as well as
the bounding box coordinates. uses default anchor boxes for regions in an image.
More anchor boxes tend to give more accurate bounding box prediction but computation
cost will be increased. [SSDI has good mean average precision (mAP) and speed, but is
slower than (You Only Look Once) which proved to be the deciding factor in
choosing

YOLO v3 architecture is quite similar to [SSDL In propagated image uses
DarkNet-53 as base network for classification and then YOLO head (a set of detection
layers) to generate feature map. This feature map contains confidence scores, class
labels as well as bounding box coordinates. Because of its single shot nature it gives
real-time performance with very good accuracy which led to selection of for
object detection. YOLO v3, a predecessor of YOLO [23], YOLO 9000 has shown

better results in accuracy with a very small trade-off with speed.

There are other networks such as RetinaNet [35] with state-of-the-art mean average

precision (mAP) results, but were not considered due to speed being the primary metric.

13



2.5 LANE DETECTION

Lane detection expands the horizon of ADAS applications vastly. There has been
constant improvement in the field of lane detection with each year. Semantic segmen-
tation is implemented for detecting lanes. Semantic image segmentation partitions an
image into regions of meaningful objects. Fully convolutional networks proposed by
Long et al. [22] from Berkeley, has an upper hand over fully connected layers in terms

of computation power and produces accurate results.

One of the major problems in using CNN is addressing the "where" problem thrown
by pooling layers. Pooling layers increase the field of view and aggregate the image
information while discarding the "where" information. The encoder-decoder architec-
ture was proposed to address this problem. Encoder gradually reduces the spatial di-
mensions and decoder reconstructs the image. There are shortcut connections between
encoder and corresponding decoder layer. These connections pass on the information
for the decoder layer to reconstruct the image to its initial spatial dimensions. One such
network which is based on the above architecture is MultiNet by Marvin et al. [28],
University of Toronto. It is an end-to-end joint inferencing network able to perform
object detection, drivable path segmentation and classification parallelly albeit sharing
a common encoding network. Since, lane detection is required for the application in-

tended, this network requires several modifications to the architecture and training.

Spatial As Deep: Spatial CNN for Traffic Scene Understanding proposed by Xin-
gang et al [16]], a generalization of deep neural network to a rich spatial level. This
network outperformed other algorithms in TuSimple lane detection challenge [[10] and
ended up securing first place. Unlike the previous model described above, this network
offers message passing. Message passing is useful in cases where the object of interest
is occluded partially. In message passing, the information from the surrounding pixels is
sent to the target pixel. Message passing is realized in a sequential propagation scheme
to make it a computationally efficient process. The published results of the network
is mentioned in the Chapter 3. Since this network straight away gives the pixel loca-
tions of detected lane points and has the inbuilt capability to distinguish ego lane from

the other lanes, this algorithm has been chosen for detecting the lanes for the intended
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application.

2.6 OPTICAL FLOW ESTIMATION

Traditionally, optical flow algorithms are divided into derivative based matching,
region based matching, energy based matching and phase based techniques. Horn
and Schunck [17], Lucas-Kanade [27]] and Nagel [21] are some algorithms which use
derivative based methods. Anandan [30] employs region based matching for flow esti-
mation. Lucas-Kanade has low computational cost and good noise tolerance but it pro-
duces sparse depth maps. Horn and Schnuck provided very good results with suitable
approximations. The drawback with all these algorithms are that they are not real-time.

Hence, it is not feasible to use them for an application like autonomous driving.

Optical flow was one of the few areas of computer vision which did not get largely
influenced by deep learning since generation of ground truth is a time consuming and
laborious task. Deep neural networks require ground truth for learning under the super-
vised learning framework. A ground truth here is the motion field of each and every
pixel on the image which is difficult to generate. However, datasets like Middlebury
[6], FlyingChairs [2] were created and the algorithms were evaluated based on them.
These datasets have very limited images and are not suitable for all applications. MPI
Sintel [8] dataset, created from a[3-D]animated movie Sintel, became a standard for Op-
tical Flow Evaluation since it encompassed a variety of movements at different scales.
KITTI Stereo/Optical Flow Dataset [4] was created specifically for autonomous driving
scenes. The 2012 version consists only static scenes. The 2015 version consists dy-
namic scenes too. The shortlisted algorithms were compared using the benchmark [3]]

provided by the same dataset.

FlowNetS and FlowNetC [13] were one of the first CNNs proposed to estimate
Optical flow. It showed the feasibility of estimating optical flow from raw images.
FlowNet2 [19] was a combination of FlowNetS and FlowNetC which runs much faster
but requires a lot of memory making it unsuitable for embedded deployment. SpyNet
[31]] combines deep learning with classical principles but, performs a little slower com-

pared to FlowNet2 due to the same reason. LiteFlowNet [12] is a smaller version of
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FlowNet2 and it performs 1.36 times faster with a model size 30 times smaller.

PWC-Net [18] is a CNN for optical flow which does pyramid processing, warping
and use of a cost volume. It is 17 times smaller in size compared to FlowNet2 model.
It is the state-of-the-art network and is the best on MPI Sintel final pass [7] and KITTI
2015 benchmarks [5]]. It runs at 35 on Sintel resolution (1024 x 436) images.

Hence, it is the most suitable network for this application.
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CHAPTER 3

DNN PIPELINE

Understanding of semantic vehicle activity from the scene requires inputs from three
deep neural networks. The accuracy and robustness of the final output depends on the
outputs provided by the networks. The networks have to be trained with appropriate
datasets so that they can provide good results as inputs to the integration. The set-up of

tools i.e. hardware and software is discussed in this section.

3.1 HARDWARE SETUP

Hardware aspect for the development of the project is limited to Personal Com-
puter (PC). The intended application requires more cores for fast computation, hence a
dedicated GPU has been chosen for reducing the computation time. CPU is chosen in a
way that it is compatible with the chosen GPU. Based on the power requirement of both
GPU and CPU, power supply unit is chosen. The specifications of the chosen CPU and
GPU are mentioned in the Table 3.1l and Table

Table 3.1: CPU Specifications

Motherboard ASUS A68HM-K
Processor AMD A6-7400K Radeon RS, 6 Compute Cores 2C+4G
Frequency 3500 MHz
Datapath width 64-bit
System memory DIMM DDR3 16GB (2x8GB), 600 MHz
Storage Kingston A400 120GB SATA 3 2.5 Solid State Drive




Table 3.2: GPU Specifications

Number of CUDA cores 4352
Number of tensor cores 544
Single precision performance | 13.4 TFLOPs
Memory 11GB GDDR6
Memory Speed 14 Gbps
Base Clock 1350 MHz
Boost Clock 1545 MHz

3.2 SOFTWARE SETUP

In setting up of software tools, the version number of packages and drivers plays an
integral part. The required packages should be compatible with each other. The driver

version should be compatible with the hardware model.

3.2.1 Operating System

Generally, most of the deep learning frameworks are designed to work on Linux first,
followed by other operating systems. Ubuntu was chosen as the Operating System as it
is an open source distribution of Linux based on Debian. The version chosen was 16.04

as support from the developer community was sufficiently available for all modules.

3.2.2 Drivers

The [GPUldriver is a way for the operating system to communicate with the graphics
card. As mentioned in the hardware specifications, the used is NVIDIA GeForce
RTX 2080 Ti. The driver version is 418.40.04.

3.2.3 Compute Unified Device Architecture (CUDA)

CUDA is a parallel computing architecture provided by NVIDIA in its for
general purpose computing. It enhances the computing ability of the significantly
by using the computing cores of the GPU parallely to increase the computation speed.

The CUDA toolkit version is 9.2 which is compatible with the NVIDIA driver.
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3.2.4 CUDA Deep Neural Network (cuDNN)

cudNN stands for CUDA deep neural network. It is a library which is specifically
used for performance tuning for a variety of deep learning frameworks. It enables
the developer to work on a higher level API rather than work at low-level [GPUI tuning.

cuDNN version installed is 7.3.1.

3.2.5 Anaconda

Anaconda is a package manager for python that provides tools such as Spyder,
Jupyter Notebook, etc. for scientific computing. The advantage of using such a dis-
tribution is that it takes care of handling the compatibilities between different modules,
provides a more interactive user interface to help with debugging on its tools such as

Spyder. It is similar to that of MATLAB. The Anaconda version is 4.6.8.

3.2.6 Python

Python is widely known and preferred for its simplicity in syntax but the availabil-
ity of extensive libraries and frameworks and community support in the area of Deep
Learning makes it the best programming language to use for this project. The version

of Python is 3.6.8.

3.2.7 Python Libraries

As mentioned earlier, Python has many libraries which provide a variety of func-
tions. These Python libraries make the work of developers easier by providing complex
functionalities and they are open source. Some of the more important libraries used are

as follows.
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3.2.7.1 Numpy

Numpy is a package used for scientific computing with python. It is a powerful tool
for dealing with multi-dimensional arrays. As we deal with images and multi dimen-

sional arrays, Numpy package is an absolute necessity. The version used is 1.15.4.

3.2.7.2 Tensorflow

Tensorflow is a machine learning end-to-end platform which allows to build and
deploy machine learning and deep learning models in embedded platforms with ease.
It provides both higher and lower level API which makes it easy for a beginner to
start with. Python is one of the most compatible languages with tensorflow. It's high
performance in terms of speed and reduced model size. Tensorflow is the best choice
among deep learning framework for working with Deep Neural Network (DNN)s and

deploying them on embedded platforms. The version of Tensorflow is 1.12.

3.2.7.3 Open source Computer Vision Library (OpenCYV)

OpenCV is a computer vision library used to accelerate the use of computer vision
applications with ease. Having many functionalities in OpenCV makes the task easier

and productive. The version of OpenCV is 4.0.0.

3.3 PROPOSED PIPELINE

Understanding of semantic vehicle activity required information about the objects
in the scene, their motion and the information about the road itself. This information
should also be temporal (related across frames) which is why tracking plays an impor-
tant role too. The object detection network gives the classes of the detected objects and
provides bounding boxes to the tracking algorithm as input. The tracking algorithm
uses these bounding box coordinates to track these objects across frames. The lane de-
tection algorithm detects all the visible lane markings on the scene in a distinct manner

such that the ego lane can be detected in every frame. Optical flow estimation provides
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the flow vectors of each pixel in the frame as input to manual integration. An abstract

model of the proposed pipeline is given in Figure[3.1]
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Figure 3.1: Proposed Pipeline

3.4 OBJECT DETECTION AND TRACKING

3.4.1 Problem Definition

Semantic understanding of vehicle activity demands identification of the vehicles in
videos. Object detection can be used to detect objects in each frame and tracking can

be done to associate the data acquired from object detection along all the frames.

A tracking by detection approach has been proposed to do object detection and
tracking as two different tasks. Object detection involves classification and localization

of objects in an image. Tracking algorithm tracks multiple objects across all the frames.

3.4.2 Need for the Task

In autonomous driving, scene understanding is a very important task and cannot
be done without semantic information. Object detection is an important task in scene

perception and it is done across all frames for the following reasons:

* To classify the objects present in the set of pixel areas.

* To localize the objects using a bounding box in an image.
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Tracking is essential for the following reasons:

* In order to associate the information acquired from object detection from all
frames and get a tracking ID for each object.

* To track the objects along successive frames until they exit the field of view of
camera.

» To mitigate the effect of identity switches caused by occlusion, motion blur, light-
ing conditions

Object detection and tracking gives the bounding box information of object along

all the frames with tracking ID.

3.4.3 Preamble of the Networks Used

3.4.3.1 Detection algorithm

Object detection can be done by many ways such as 2-dimensional (2-D)) bounding
box, B-Dlbounding box and instance segmentation methods. In bounding box methods
generally a regression-based CNN is used to get the bounding box coordinates. But in-
stance segmentation method uses a pixel level segmentation approach to classify object

pixels.

The introduction of CNN, AlexNet opened up a huge research space of semantic
understanding in computer vision. But the first object detection approach Region based
Convolution Neural Network (RCNN) was published in 2013, which does object de-
tection by two stages. In the first stage it generates region proposals using a regression
network, and in the later stage each region of the image subjects to a smaller CNN to
classify the object. RCNN]|was the stepping stone to many object detection approaches.
Later in 2015 a new single-staged approach [23] was proposed, which was fast
and accurate. Over the years YOLO has been improved significantly and YOLOvV3 [32]]

is being used in this application.
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3.4.3.2 Tracking algorithm

Tracking algorithms have been around for decades, but after the introduction of
deep learning they have been improved significantly. Simple Online Real-time Tracking
(SORT)) [14]] was one of the best Multiple Object Tracking (MOT)) algorithm with very
good speed, but DeepSORT [29]], which uses a small CNN to incorporate appearance
information using a pre-trained association metric to handle long term occlusion very

well.

3.4.4 Positive Attributes

The approach of tracking by detection shows us significant improvement over the
pure detection method by reducing False Positives (EFP) and False Negatives (EN). The
tracking algorithm is very fast, which shows no overall reduce in speed of tracking by

detection approach.

3.4.5 Published Results

YOLOV3 has been compared with few state-of-the-art detectors such as[SSDI Reti-
naNet considering mAP and inference time as evaluation metrics. The comparison has

been done with Titan X GPU as the candidate hardware as shown in Table

Table 3.3: Performance of CNNs for Object Detection

CNN mAP | Inference time (ms)
SSD 28.0 61
R-FCN 29.9 85
RetinaNet-50-100 | 32.5 73
RetinaNet-101-500 | 34.4 90
RetinaNet-101-800 | 37.8 198
YOLO v3-320 28.2 22
YOLO v3-416 31.0 29
YOLO v3-608 33.0 51

Though the accuracy of RetinaNet [35] is slightly better than sur-

passes RetinaNet's inference speed with ease.
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3.4.6 YOLO Network Architecture

YOLOIis a single shot object detector, which takes image as an input and gives a

tensor containing all bounding box information, classes and confidence scores.

To understand network architecture [Figure [3.3]], it can be divided into two
parts such as YOLO body and YOLO head. First part of the architecture is used to
extract features, which is considered base network. In YOLOv3, Darknet-53 has been
used as base network, also called as YOLO body, to extract features from the input data.
Then the extracted features will be subjected to YOLO head, which does the detection

of objects. This detection involves the localization and classification of objects.

YOLO body (DarkNet-53) extracts features from an image in three different scales
for detecting small, medium and large objects accurately, which will be fed into YOLO

head.

Convolution layer ‘X’ filters

CONV_2D — Leaky_relu

Residual unit

-=‘4{ o I o J—?;
8 Residual Blocks

n Residual Blocks
T Scale 26 x 26

¥
Res_Block — CONV_2D —>
Scale 13 x 13
>

4 Residual Blocks
‘n’ Residual units

DarkNet-53

Convolution layer 32 filters
¥
Convolution layer 64 filters
¥
1 Residual Block
¥
2 Residual Blocks

1

8 Residual Blocks

li

Scale 52 x 52

|| U L JCJ L J L J

Figure 3.2: DarkNet-53 Architecture

To simplify DarkNet-53 architecture, it has been divided into CONV2D blocks and
Residual blocks as shown in Figure [3.2]

Each CONV2D block consists of a convolution layer along with a leaky ReLU layer
as in Figure [3.2] Residual blocks (Res-Block as per the Figure [3.2)) are made of one
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CONV2D block followed by n residual units. Here, n defines the number of residual
blocks. Each Residual unit can be made by two CONV2D blocks stacked together and

added with the input itself.

5 s
(< 4
ll coNV 2D 13x 135;]255 ’
CONV_2D I
T

Scale 13 x 13[—

26 %26 % 255

. Scale 26 x 26
DarkNet-53 T

Image (416 x 416) Scale 52 x 52
5 x Convolution layers
| =
| ———/, Concatenate . Sz;Ei]zszéss
CONV_2D

YOLO BODY YOLO HEAD

Figure 3.3: YOLO v3 Architecture

From the YOLO body three different scales of output (in our case 13 x 13, 26 x
26, 52 x 52) will be found. At 82nd layer first detection is made. 81st layer has a
stride of 32, which makes the input to downsample to the 13 x 13 (considering input
image size is 416 x 416). Output feature map will be of 13 x 13 . This will be fed
into convolution layer of 1 x 1 x (B x (5 + C)) kernel to get output tensor of size 13
x 13 x 255. Where B is the number of bounding boxes a grid cell on feature map can
predict, C number of output classes. For pretrained weights thisis 1 x 1 x 255 because
of values of B and C. Here, B represents the number of anchor boxes, which is 3, C
represents the COCO number of classes, which is 80, and, 5 represents bounding box

information and predicted score, which is constant.

Feature map from 79" layer will be subjected to a convolution layer and then con-
catenated with medium scale output of YOLO body. The output will be subjected to a
few convolution layers again and then downsampled to 26 x 26 followed by a convolu-

tion layer of 1 x 1 x 255 kernel to get the output tensor of size 26 x 26 x 255.

A similar procedure takes place for small scale also, but feature map will be from
91 layer, at last feature map will be downsampled to 52 x 52. Output tensor size will

be 52 x 52 x 255.
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It can be inferred from the above that YOLOv3 downsamples input image by the
scale of 32, 16 and 8 respectively. One more point to note is functions such as softmax

are not used in [YOLO) as the output tensors contain all the necessary information.

YOLOV3 uses a total of 9 anchor boxes, 3 for each scale. To use BDD dataset [20],

new anchor boxes can be generated using k-means clustering.

Input image is converted into S x S grid cells (S defines image size / scale). Each
grid cell is responsible for predicting the image when the object centre lies on the grid
cell. Each grid cell predicts more than one bounding box for the same object with the
help of the predefined anchor boxes, later the optimal bounding box can be found using

LoU]

YOLOv3 generates 3 different scales of output tensors containing the bounding
boxes, confidence scores and class names. This output tensor will be subjected to few
post-processing steps such as and Non Max Suppression (NMS)) to remove the
unnecessary bounding boxes. Bounding boxes, class names and confidence scores will
be found from object detection. Bounding boxes from object detection will be used for

tracking.

3.4.7 Deep SORT Algorithm

Deep SORT (Simple Online Real-time Tracking with a deep association metric) [29]
is an improved version of [14], is used as a tracker in our tracking by detection
approach. It uses conventional vision algorithms to do tracking but by adding deep
association metric long term occlusions can be sustained. It is generally assumed the
noise to be present in our input data and camera to be uncalibrated. The Deep SORT

pipeline is shown in the Figure

Motion metrics Appearance metrics
Calculating
Bounding boxes Kalman Filtering Mahalanobis CNN New bounding boxes
distance

Track Handling and state

A Data Association
estimation

Figure 3.4: Deep SORT Pipeline

26



3.4.7.1 Track handling and state estimation

An eight dimensional state space model as (u, v, , h, u’, v’, r’, h’ ) is defined,
where u, v are bounding box centers, r is aspect ratio, 4 is height of the box and ( u’,
v’, r’, h’ ) are their velocities in image space. Kalman filter is used to solve the velocity
components. For each track k, number of frames since the last successful association ay
is counted. This counter will be incremented for each Kalman filter prediction. When
tracks exceed their predefined age A, track will be deleted. The algorithm requires

at least three frames to successfully associate to a measurement.

3.4.7.2 Data association

SORT] Hungarian algorithm is used to solve the assignment problem between pre-
dicted Kalman states and newly arrived measurements. But in Deep SORT, motion and

appearance information are incorporated using combination of two appropriate metrics:

* For motion information, Mahalanobis distance is calculated between predicted
Kalman state and new state.

* For appearance information, a CNN is used to find bounding box appearance
descriptors. The architecture of network is described in Figure The above
mentioned informations will be combined using a weighted sum to build the as-
sociation problem as shown in Figure [3.4]

This CNN has been trained on a large-scale person re-identification dataset. Though
it is trained to track pedestrians it gives decent performance boost over [SORI] in our
driving case scenario. We can train it to improve the accuracy for autonomous driving

cases.

Architecture of CNN in Figure [3.5]is a wide residual network starts with two con-
volution layers followed by six residual blocks. Then, a dense layer is added to reduce
the dimensionality to 128. A final batch and L2 normalization converts the feature map

of dimension 128 to unit hypersphere to be compatible with our appearance metric.
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Name Output size

[ Convolution layer ] [ 32 x 128 x 64 ]
v

[ Convolution layer ] [ 32x 128 x 64 ]
v

[ Max pool layer ] [ 32 x64 %32 ]
¥

[ Residual block ] [ 32x 64 %32 ]
v

[ Residual block ] [ 32 x64 %32 ]
¥

[ Residual block ] [ 64x32x16 ]
¥

[ Residual block ] [ 64x32x16 ]
v

[ Residual block ] [ 128 x 16 x 8 ]
¥

[ Residual block ] [ 128 x 16 x 8 ]
¥

[ Dense layer ] [ 128 ]
v

[ Batch and 12 normalization ] [ 128 ]

Figure 3.5: CNN Architecture for Appearance Metric

3.4.8 Integration of Detection and Tracking

In tracking-by-detection approach, bounding boxes and tracking IDs are taken from
tracking output, but tracking algorithm has generally no influence on class labels. So
output class labels have to be fetched from the output. Number of bounding
boxes from and from tracking will not always be same, as tracking takes care
of [FPs and [ENk . The association between class names and bounding boxes will be a
challenge. To mitigate this problem, storing of all class labels will be necessary. For
each track, the first frame in which it is being tracked is found and class labels are taken
from the stored list. This class label from the first tracked frame will be passed to all

consecutive frames until the object is lost.

3.4.9 Results

The results of the object detection using have been shown in Figure[3.6] On

the top of the bounding box, class is shown. Different colors are assigned for various

28



classes.

Figure 3.6: Output of YOLO

Tracking ID and bounding boxes are generated from tracking. The results of only

tracking are shown in Figure[3.7]

Figure 3.7: Output of Deep SORT

Results of both tracking and object detection are overlapped in Figure[3.8] Blue box
represents the bounding box generated by YOLO while white bounding box is from the

tracking algorithm.

Figure 3.8: Output of YOLO and Deep SORT

After integration between tracking and detection labels will be shown in Figure [3.9]
Label contains the class label from YOLO and tracking ID and bounding box from

tracker.
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Figure 3.9: Integration of Object Detection and Tracking Outputs

Information to be passed into integration algorithm will be bounding boxes, tracking

IDs and class labels.

3.5 LANE DETECTION

3.5.1 Problem Definition

Deep learning architecture should be able to detect all the lanes and be able to dif-
ferentiate ego lane from the detected lanes despite partial occlusion. It should be able

to predict the precise lane curve.

3.5.2 Need for the Task

The interest to develop lane detection solutions increased with the demand for ADAS
and self driving cars. Drivers not only depend on the lanes for safe driving but also for
visual cues (e.g., pavement markings) to understand what it is and what is not allowed
(e.g., lane change,direction change). The integration part discussed in the later section
of the report assumes the lane as an object of reference for detecting ego motion, i.e
motion of the camera on board vehicle, which will be discussed elaborately in Chapter

4. Lane detection plays an important part in vehicle lane change activity analysis.
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3.5.3 Preamble of the Network Used

To compute spatial relationships, traditionally Markov Random Fields and Condi-

tional Random Fields were used. Message passing, is another spatial relationship com-

putation process wherein each pixel gets information from the pixels around it. It is

computationally expensive and harder to be implemented in real time. Generally, these

methods are applied to the output of the CNN models. The top hidden layer comprises

of rich information which could be a better place for placing the spatial relationship

model.The Spatial Convolutional Neural Network (SCNN) proposed by Xingang et al

[L6]] offers better run time and spatial relationship model runs over information rich top

layer.

3.5.4 Positive Attributes

The positive attributes of SCNN network are as follows :

The adopted network has the capability to detect the lanes despite partial occlu-
sion of lanes.

SCNN] is computationally efficient where message passing is realized in a se-
quential propagation scheme rather than each pixel receiving information from
the pixels around it.

It shows good ability to predict fine lane curves and offers good balance between
speed (fps) and accuracy.

It is capable of detecting upto four lanes and differentiates ego lane from the
others.

It gives output in the form of pixel coordinate location of the detected lanes points
which is easier for integration.

3.5.5 Published Performance Results

The ISCNN| was tested on three different testing sets which are TuSimple dataset
[11], CULane [1]] and BDD100K [20]. The results of (Library-Torch) network,
based on ResNet-101 [24], tested on TuSimple dataset is given in the Table The

31



results of[SCNN](Library-Tensorflow/Torch), based on VGG-16 [25]], tested on CULane
and BDD100k testing test are given in the Table [3.5]and Table [3.6] respectively.

Table 3.4: TuSimple Dataset Results

Model Accuracy FP FN
[SCNNI (Library-Torch) | 96.53% | 0.0617 | 0.0180

Table 3.5: CULane Testing Set Results

SCNN (Library-Torch) SCNN(Library-Tensorflow)
Category
F1-measure F1-measure

Normal 90.6 90.2
Crowded 69.7 71.9
Night 66.1 64.6
No line 43.4 45.8
Shadow 66.9 73.8
Arrow 84.1 83.8
Dazzle light 58.5 59.5
Curve 64.4 63.4
Crossroad 1990 4137
Total 71.6 71.3

Table 3.6: BDD100K Dataset Results

Model Accuracy | IoU
SCNN-Torch | 35.79% | 15.84

3.5.6 Network Architecture

SCNN views rows or columns of feature maps as layers and applies convolution,
nonlinear activation, and sum operations sequentially, which forms a deep neural net-
work. This makes it possible for the information to be passed between the neurons in
the same layer. The word spatial in SCNN, denotes propagating spatial information via

specific CNN structure design.

The architecture of the adopted network is shown in the Figure The network
resizes the input image size to 800 x 288 by linear interpolation function using OpenCV
library and sends it as a[3-Ditensor input of size C' x H x W, where C, H, and W denote
the number of channel, rows and columns respectively. The input tensor is then passed

to the first 13 layers of VGG16 and the weights are initialized accordingly from VGG16
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model. Followed by atrous convolution of rate 4 which strikes a good balance between
efficiency and accuracy [26]]. Then fast bilinear interpolation by an additional factor of
8 is done to recover the feature maps at the original resolution [26]. The probability
maps from softmax layer is passed over to another small network to predict existence
of lane markings. For lanes with more than 0.5 for lane existence value, the network
searches every row in the corresponding probability map for the pixel locations with
highest response and these locations are then connected by cubic splines. The detected
lane pixel coordinates is then overlaid over the actual input image with different color
codes for the four lanes. The region between detected blue lane and detected green lane
is the ego lane. The metric evaluation of the network is not within the scope of this

project.
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Figure 3.10: SCNN Lane Detection Architecture
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3.5.7 Non Destructive Overlay for Visualization

SCNN gives output in list format comprising of pixel location of the detected lanes.
For visualization using OpenCV library function cv2.circle, circles of radius 5 pixels
were plotted over the detected lane pixel locations in the input frame. As the number of
detected lane pixels increases, circles starts to overlap with each other and it appears as

a line plotted over the lane.

3.5.8 Results

The SCNN algorithm was run on the videosets downloaded from the internet. The
ego lane is the path between blue and green detected lanes. The algorithm performed
impressively considering the ability to detect lanes despite partial occlusion and differ-
ent lighting conditions. Figure [3.11] Figure [3.12] Figure [3.13] and Figure [3.14] shows
detection results of different lanes subjected to different conditions. There were a few
frames with unsatisfactory results Figure [3.15in which two different lane colors were
overlaid on the same lane. When the separation between the dashed lane increases, the

algorithm performs unreliably. Also, eccentricity of the lanes has a huge impact in the

lane detection.

Figure 3.11: SCNN Result for Straight Lanes
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Figure 3.12: SCNN Result for Curved Lanes

Figure 3.13: SCNN Result for Partially Occluded Lanes

Figure 3.14: SCNN Result for Lanes Under Shadow
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Figure 3.15: Poor Results from SCNN

3.6 OPTICAL FLOW ESTIMATION

3.6.1 Problem Definition

Optical flow is the movement of the brightness patterns across frames caused due to
the apparent movement of objects on the real world. The optical flow vector of every

pixel in every frame of the acquired video has to be determined by the network.

3.6.2 Need for the Task

Each pixel will have a flow vector will have two components along X and Y direc-
tions which are nothing but projections of the actual flow of the objects on the
image. Estimation of this flow is essential as we can extract information about the mo-
tion of every object on the scene using this information. The motion of the ego vehicle
can also be determined using the static objects (known beforehand) on the scene. This

will be explained in detail in Chapter 4.
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3.6.3 Preamble of the Network Used

Traditionally, optical flow estimation has always been a problem which has been
solved using image processing techniques. It was one of the areas of computer vision
where deep learning could not make a quick impact. It was largely due to the lack of
availability of ground truth. Manual labelling was a laborious and time consuming task

as it involved labelling every pixel motion.

Optimizing a complex energy function was the approach used by many of the tra-
ditional algorithms but it was computationally expensive. It assumed brightness con-
stancy and spatial smoothness constraints to predict the optical flow. CNNs were ini-
tially used as a component in the algorithms to perform tasks such as sparse to dense in-
terpolation, construction of cost volume and sparse matching. The most recent methods

used cost volumes, pyramid creation and warping methods but they were not real-time.

3.6.4 Positive Attributes

The positive attributes of PWC-Net are as follows :

* PWC-Net model has computationally light CNN layers, cost volumes and warp-
ing compared to energy minimization approaches.

* It constructs only partial cost volume making it more memory and computation
efficient.

* Itused feature pyramids instead of image pyramids making it invariant to shadows
and lighting changes.

* It combines deep learning with domain knowledge to reduce model size as well
as improve performance.

3.6.5 Published Results

Since its arrival, the PWC-Net has been the state-of-the-art network for optical flow
estimation. Itis 17 times smaller in size compared to the second best network and twice
as faster. It runs at 35 fps for the Sintel resolution (1024 x 436) images. It is the top
rated network on the KITTI 2015 benchmark as shown in Table
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Table 3.7: KITTI 2015 Benchmark Results for Optical Flow

Non-occluded pixels All pixels
Method Flo-bcg | Flo-frg | Flo-all | Flo-bcg | Flo-frg | Flo-all
PWC-Net | 6.14% | 598% | 6.12% | 9.66% | 9.31% | 9.60%

Flo - % of optical flow outliers
bcg - % of outliers averaged only over background regions
frg - % of outliers averaged only over foreground regions
all - % of outliers averaged over all ground truth pixels

3.6.6 Network Architecture

PWC stands for pyramidal processing, warping and cost volume. The method has
been designed based on these simple principles. The method can be divided into five
major parts - feature pyramid extractor, warping layer, cost volume layer, optical flow

estimator and context network.
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j j i '
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---------- . " e
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Refined flow

Figure 3.16: PWC-Net Architecture
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3.6.6.1 Feature pyramid extractor

Two consecutive frames are taken as the two images and n-level pyramids of feature
representations are created. The input images are the bottommost images. Layers of
convolutional filters are used to downsample the features at each pyramid level by 2.
With each level, the number of feature channels keep on doubling starting from 16 for
the first level to 196 for the sixth level. Siamese network is used to encode the frames.

Leaky ReLLU is used as the activation function after every convolutional layer.

3.6.6.2 Warping layer

At nth level, bilinear interpolation is used to warp the features of the second frame
on the first frame using x2 upsampled flow from the n+1*" level. The flow for back-

propagation and gradients to CNN features'inputs are computed.

3.6.6.3 Cost volume layer

Cost volume defines the range of search for corresponding features between the con-
secutive frames. It stores the costs for matching them appropriately. It is defined as the
correlation between the first frame and warped features of second frame. An important
thing to note is that the motion at the topmost level of the pyramid amplifies with the
decrease in level. A small motion at the top might amplify, to become a significant

motion at the actual resolution.

3.6.6.4 Optical flow estimator

The optical flow estimator is a CNN on its own. Its architecture is shown in Figure
It is fixed at second level of the pyramid. In this network too, Leaky ReLU is
used as the activation function that follows the convolutional layer. The cost volume,

first image's features and upsampled optical flow are the inputs of the network.

The number of feature channels keeps on reducing from 128 to 32 with the layers.

The final layer does not have any activation function as it provides the output i.e. optical
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Figure 3.17: Optical Flow Estimator Network

flow at the n'” level.

3.6.6.5 Context network

The context network is used to post process the flow [ Figure [3.18]|]. This is also
applied at the second pyramid level and a leaky ReLLU follows each convolutional layer.
Its inputs are the estimated optical flow and the penultimate layer's features from the

optical flow estimator network.

The dilation constants given at the end handles the separation between the input
units in horizontal and vertical directions. The output of the context network is the re-

fined optical flow.
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Each pixel will have a vector which can be converted to polar coordinates for

visualization. The visualization is colour coded in such a manner that hue represents

direction and saturation represents magnitude of the flow vector as shown in the Figure

[3.19] The optical flow output for a sample frame is shown in the Figure [3.20]

High saturation

High hue

Low hue

Low saturation

Figure 3.19: Colour Coding for Optical Flow Visualization
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Figure 3.20: Sample Frame and its Optical Flow Output from PWC-Net
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CHAPTER 4

INTEGRATION AND INFERENCE

Object detection and tracking, lane detection and optical flow estimation cannot
provide meaningful data on their own separately. Their outputs have to be made use
of to extract meaningful data about vehicle activity and acquire the final labels. This
integration of outputs from all the three aforementioned networks majorly involves the

use of image processing techniques and pixel level processing.

Metrics involves quantifying the various numerical parameters such as distance,
speed, etc. but semantics involves just qualitative labelling. Semantics can just provide
information about whether a change is happening or not. It cannot provide how fast
or how slow the change is happening as it would all be relative. The work carried out
in this project involves extracting semantic labels for vehicle activity as metric labels
are not possible to acquire using the data from just a single camera. There are various
techniques to estimate the depth, get metrics about distance of objects on the scene, etc.
but they are not reliable and robust to be performed using just a single camera. More-
over, the recent trend in autonomous driving is to do more with just a single camera.
Autonomous vehicle makers such as Tesla are aspiring towards it. Hence, the labels

given for every vehicle would be semantic and the details are discussed in Figure 4.1]

Figure §.1] shows how the final label for each vehicle is obtained. The final label

consists of two parts.

* The first label describes the motion of the ego vehicle itself, if it is at rest or
moving and is displayed at the bottom of each frame

* The second label is for each and every vehicle and follows the following format:
class name - tracking ID - along the road - across the road

The class name of the object is the first part of the label which is obtained from
YOLOV3. The tracking ID for the corresponding object is obtained from DeepSORT
and appended to the class name. The labels to describe vehicle motion along the road

and across the road are appended at the end.



Ego
Vehicle

Tracking 1D
of Objects
on the scene

VEHICLE MOTION

Figure 4.1: Final Output Labels
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4.1 VEHICLE MOTION ALONG THE ROAD

The third part of the final label for each vehicle is the motion of the vehicle along the

road. This is an important part where the results from optical flow matters a lot. The

decision tree for prediction of vehicle motion along the road is shown in Figure 4.2
Ego Vehicle

Motion
|

at rest

ego lane pixels flow vee=0

(app.)

C N

ego lane pixels flow vec !=10

rest oneoming forward
rel_flow_vec =10 rel_flow_vec = -ve rel_flow_vec = +ve
(app.) (high) (high)
forward rest oncoming
rel_flow_vec = +ve rel_flow _vec =10 rel_flow_vee =-ve
(high) (app.) (low)

K VEHICLE MOTION ALONG THE ROAD J

rel_flow vec = obj_flow_vec - ego_lane_pixels_flow_vec
(only Y component for all decisions )

Figure 4.2: Decision Tree for Prediction of Vehicle Motion Along the Road

4.1.1 Reference Frame

First of all, to define any motion, a reference frame has to be set. In this case,
the lane markings on the road are considered as the reference for all motion as they are
stationary. The ego vehicle motion and motion of the vehicles on the scene are predicted

with reference to these lane markings.
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4.1.2 Decision Tree Level 0

If the ego vehicle is at rest, the ego lane markings detected by the lane marking
detection network will also be stationary. Hence, their flow vector will have zero mag-
nitude. If the vehicle is at motion, the lane markings will have a considerable amount

of flow in the negative Y direction.

4.1.3 Decision Tree Level 1

Once the ego vehicle motion is decided, there are three possibilities of motion for
the vehicle on scene in each case - rest, forward and oncoming. For this level, a relative
optical flow vector is obtained where the ¥ component of the flow vector of the ego lane

pixels are subtracted from the ¥ component of the flow vector of the object.

Note that in both the levels of the decision tree, the flow vector average of only the
ego lane markings are considered as the other lanes are too eccentric and reduce the

average magnitude of the lane flow vector.

The relative flow vector obtained is used to decide the motion of the vehicle. It can
be almost equal to zero, have a positive value (high or low) or a negative value (high or

low) depending on the cases presented in Figure

4.2 VEHICLE MOTION ACROSS THE ROAD

The fourth and the final label for each vehicle describes its motion across the lane.
Due to perspective projection, even if a vehicle moves far away from the ego vehicle
without changing lane, still there would be a component of optical flow along the X
direction. Hence, using optical flow for this case proves to be ambiguous. Hence, a

different approach is taken here given by the following Figure

Two conditions have to be satisfied to provide the lane change label. The point of
intersection of the lane marking and the bounding box of the object should be between

the left and right bottommost corners of the bounding box. This condition proves that
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VEHICLE MOTION ACROSS THE ROAD

CASE 1 CASE 2 CASE 3
base _ - f - - - -
level
only one side detected - both sides detected - Both sides not detected -
can provide label for that can pravide labels for cannot provide labels for
side both sides both side
Bounding Lane
Box of marking
object detections

Figure 4.3: Cases for Lane Changing Prediction

LANE CHANGE CONDITION

Bounding Box

1.  POI should be between
Left corner and Right
COrner.

2. Significant movement
of POI towards either

L~ O Left corner or Right

corner between
Right consecutive frames.
corner

Figure 4.4: Lane Change Condition
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the vehicle is not travelling in one specific lane. The second condition is that the point
of intersection should move significantly towards either the left or the right corner be-
tween successive frames and the labels like ( left to right or right to left ) can be given
according to that. In case there is no significant movement, then no change will be al-

loted as the label. Various cases for lane changing prediction are shown in the Figure

43

In any case, the tracking ID will always be available on the final label. The class
name might be missing in a few frames but it is a rare occurrence as detects
almost all object accurately across all frames. The labels for vehicle motion along and
across the road will also be present for all the frames as it covers all the cases.The final

output with labels for few sample frames are shown in Figure [4.5]

Figure 4.5: Final Results with Labels
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4.3 INFERENCING

Inferencing for final integration was carried out on both embedded platform and PC
for video sets obtained from internet sources. The processing was done frame by frame.

Since PC offers external GPU support, inferencing was done much faster done on PC.

4.3.1 Inferencing on Embedded Platform

Raspberry Pi model 3B [Table {.1]] was chosen as the primary processor which is
assisted by the Intel Neural Compute Stick-2 to run deep neural networks [Figure 4.6].
Intel NCSF2 which is powered by Intel's VPU(Vision Processing Unit) - the Intel Mo-
vidius Myriad X, which includes an on-chip neural network accelerator called the Neu-
ral Compute Engine. It has 16 programmable SHAVE (Streaming Hybrid Architecture
Vector Engine) cores which accelerates the deep learning network performance. De-
ployment of the models on [NCS| required installation of the Intel Openvino toolkit and

conversion of checkpoint files to XML and binary files.

INCS| is a relatively new device specifically designed for the inferencing of deep
neural networks. Some of the layers of Neural networks such as argmax, etc. are not
supported by it due to reasons not known yet. The available online community support

is also less. It has USB form factor and can be plugged directly into the Raspberry Pi.

It ran at 2 |[fps|for YOLOv3. Due to the lack of support of some layers, PWCNet and
SCNN could not be deployed on [NCSI However, future work could be done to modify
these layers to suit the

Table 4.1: Embedded Platform Specifications

Device Model Raspberry pi 3B
Central Processing Unit (CPU) | 4 X ARM Cortex-A53, 1.2GHz
GPU Broadcom VideoCore IV
RAM 1GB LPDDR2 (900 MHz)
Storage 32GB micro SD card class 10
Power supply 6V 2-3A
Operating System Raspbian Stretch
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Figure 4.6: Embedded Hardware with Intel NCS}-2

4.3.2 Inferencing on PC

The integration script was run on PC which reads the video and processes it frame
by frame. Each network is called for every frame and the output data is obtained from
them. The[CPUland[GPUl specifications for inference are the same as the one mentioned
in Chapter 3 (Table [3.1] Table [3.2). The speed of inference was 5 [fps]
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CHAPTER 5

CONCLUSION AND FUTURE SCOPE

The objective of the project was to interpret the semantic activity of vehicles on the
scene. Initially drivable area detection was chosen as the task to understand the road
environment but later ego lane detection proved out to be more efficient and compu-
tationally less expensive. The three algorithms based on deep neural networks were
chosen among the different research articles on the basis of run time, model complexity
and accuracy. The outputs of the three networks are integrated to predict the semantic

vehicle activity.

The inferred labels were accurate for most test cases but some of the videos had very
noisy output, i.e. labels varied in a drastic manner. The result of the integration was
heavily dependent on the accuracy of three networks. In some of the frames, YOLO
was not able to detect the object but Deep SORT was able to predict the bounding
box. As a result, the classes were not identified in those frames. The output of the ego
lane detection was affected by eccentric lane markings. The lane detection algorithm

struggles to detect when the separation between the dashed lane markings increases.

The embedded implementation was carried on raspberry pi supported by Intel NCSH
2 to boost the inference process.The processing frame rate was lower than expected
which can be attributed to the complexity of the neural networks and limitations of the
processor. One of the major setbacks was that some of the layers of the neural networks
were not supported by the Intel NCSF2 and hence some models could not be run on the
INCSI2.

This project work can further be enhanced in the following ways :

Smoothening the output of the integration to make it less noisy

Training the networks to get best accuracy, preferably with Indian road data.

Making the DNN pipeline end-to-end, instead of manual integration.

Making it work in real-time on an embedded board for true real time performance.
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APPENDIX A

PROJECT FILES

The project files are uploaded on the followingGoogle Drive. They can be found here :

https://drive.google.com/open?id=141MXFLPgS58JkF8KOUFI8YSge5K71R1J

Appendix [A.T| shows the schematic diagram of the organisation of files and folders
in the Integration folder. The three networks are available as sub-folders along with
the main integration script. The individual scripts, models and functions are accessed
directly from the integration script. The test video should be available in the main

folder.

Appendix Appendix and Appendix shows the schematic diagram of
the files and scripts in Detection and Tracking, Lane and Flow folders. The relationship

among the scripts are shown in the figures.


https://drive.google.com/open?id=14lMXFLPgS58JkF8KOUFI8YSge5K71R1J
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A.3 Lane File Directory
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A.4 Flow File Directory
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APPENDIX B

INTEGRATION CODE
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